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éUMMARY

A simple analytical @odéi for stellar corona is developed., It is -
based on the assumption of an isothermal stationary corona and

:é transition region of constant pressure.

For mathematical convenience it is aséumed<that the dissipation

of mechanical energy takes place in a layer of negligibls vertical
extend. S ‘

It is shown that there is an upper limit for {the mechanical flux
heating the corona. If this limit is exceeded ntr extended
stationary corona is possible. It is‘suggested that a thin corona
is formed. ) St e .

The results of the caiQulafibnS‘afe in gqod.agrsemant‘with the
numerical resulis. of Hearn andZVafdévas (1981).. - -

T¢ is shown that there is.a lower bound to the height of the dissipative

layer above the chfomosﬁhere.
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1. INTRODUCTION

Several authors (Hearn and Vardavas (1981), Hammer (1981), Souffrin
(1982) and Hearn et al. (1983)) have found theoretical indications
that. there exists an upper limit for the mechanical flux heating

a corona. Hearn and Vardavas (1981) have suggested that a thin
hydrostatic corona is formed if the mechanical flux exceeds this
upper limit.

In this paper an analytical for a stellar corona is presented. In

this model the energy balance in the transition region is examined.
This energy baldnce is determined by the heating of the corona,

the energy losses due to radiation and the divergence of the conducted

heat. This balance can be put in the following form
Ved=q . -q, (1)

where qy is the mechanical heating of the corona, q, is the radiation
loss and J is the conducted heat. (See Martens (1981))

For a given heating function there is only one solution of (1)
consistent with the boundary condition at infinity.

(1) will be solved using heating functions in a mathematical

convenient form. The heating function is specified by two parameters.

The aim of this work is to find out which combinations of parameters
yield extended stationary coronae.

To compare the results with the results of Hearn and Vardavas (1981)
the calculations will be done for an OB- supergiant.

It will be confirmed that there is a maximum mechanical flux

consistent with an extended stationary corona, and according to

the numerical result of Hearn and Vardavas (1981) a solutionbfor

a thin hydrostatic corona is found.

“Finally the theory will be applied to the solar corona.



3

2. THE CORCNAL MODEL

2.1 The energy equation

This section describes the energy equation which is valid in the

transition region. The following assumptions are being made: (Martens

- The thickness of the transition region is small compared to the
stellar radius, so a plane parallel geometry may be used.

- The thickness of the transition region is smaller than the pressure
scale height, so constant gas pressure is assumed,

~ The stellar wind velocity and energy are negligible.

~ The atmosphere consists of fully ionized hydrogen.

— The transition is homogeneous in the horizontal direction, so the

model can be one dimensional.
With the assumptions above the gas law can be written as

P =2n kT
o] e

where Po is the constant gas pressure, n, the electron density and

T is the temperature. k is Boltzmann's constant.
The radiation losses of a hot ionized, optically thin gas of stellar
composition can be described by

q, = no (1)
(Cox and Tucker 1969, McWhirter et al. 1975)
For 1.5 10t ke e 106 K j(T) can be approximated within a factor
two by '

jo(T) - 1.8 10722

3 3-1)

(ergcm
The divergence of the conducted heat is given by
4 5/2 aT

Vel = -qp (%, 7% 5)
where h is the height in the transition region.
An estimate for W, is given by Athay (1971, p. 36)

w, = 1.1 10—6 (erg em™ ! g™ K-7/2 )
In the calculations the heating function qQ will be a nonnegative

function, which is zero beyond some height ho' The function satisfies

1981)

(2)

8

(4)

(5)

(6)
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where F
o}

The following heating function will be used in this paper

qh(h) dh = F_

is the total mechanical flux entering the transition region.

a(n) = F §(n-1)

where é(x) is the Dirac delta function.

This heating function represents very intens heating at one place L .

This will be called é—heaxlng. Physically this means that the

mechanical flux is dissipated in a very thin layer around Lo.
Combining (2), (3), (5) and (8) yields

o dh

4 k2 T

d (952 @2y, Dolo

2

- F, 8 (h- L, )

This is a second order, non linear differential equation for the

temperature. The boundary conditions are T(Q) = T

an
chrom

ar
d EH(O) = 0.

The last condition means that there is no thermal conduction down

into the chromosphere.

In some cases another heating function will be used; the socalled

constant heating (Martens 1981)

[¢)

F
g (8) = =2 H(1_-h)

o}

where H(x) is the Heaviside stepfunction.

2.2 Solution of the energy equation in the.case of S-heating

Equation (9) can be made dimensionless by choosing new variables

and y.

n- (n/n )/

=h /€L,

Ta is a reference temperature defined by

P F
o _ _°
2 T2 LO
a

and € is given by

7€2

7/2
= "5 Ta / LoFo

(7)

(8)

(9)

(10)

(11)
(12)

(13)

(14)



The result is
2 )
280 L T §(ey-1) (15)
dy2

The boundary conditions become I)(O) 1 and -%"l(o) = O.

By integration of (15) one easily sees that
lim g—y’l ~ 1im %\: 1/ 2€ (16)
y1¢€ y V€ ,
This jump in the derivative of Q is due t0 the mathematical properties
of the Dirac delta function, which are not of physical interest, since the
heating will take place in some finite interval.
For y < 1/€ and N (0) = O the solution of (15) is
W) = (= ) WY | | (17)
2V21
Because Y}(1/£) has to represent a temperature maximum &£ has to be
less than 0.201. This follows from (16) and (17). A physical expanation
for this is that if &€ exceeds 0.201 all the dissipated mechanical
energy is conducted into the transition region, where it is radiated
away. This means there is no enrgy supply to the corona.
For y $>1/€ the first integral of (15) is
@2 I .o (18)
where ¢ is an integration constant.

The condition imposed by (16) and the continuity of fz give

1 11
oo - LG e (2

Cne now can distinguish three cases: ¢>0, ¢<0 and ¢ = 0.

1. ¢ > 0, €< 0,078

this gives’

Sl

%y-Q:—(%—QB/7+c)%<~c _ (20)

This is not an é.ccepta.ble solution, because "k falls down very

rapidly and becomes less than zero.
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2. ¢< 0, 0.,078¢ €< 0.201 ( See fig. 1)
In this case the region beyond the temperature maximum can be
approximated fairly well as isothermal. One finds a solar type
‘corona with a modest massloss. Martens (1981) has calculated
coronal models using expressions for'the energy losses that
were derived by Hearn (1975).

The energy flux entering the corona is

L
F-F_ - { q(n) dn - (1- 3.0/ ) F, (1)
0

This will be further discussed in section 3.
3. ¢c=0, £€= 0.078 ( See fig. 1)
The exact solution of (15) is for 1/e< y< 2/
11

N - (U - g (v -1 N @
In this case one can calculate that

2Lo

O_{' a (h) dh = F_ (23)

so all the dissipated energy is radiated away. The solution
representsa thin corona. Beyond h=2 Lo the atmosphere will be

in radiative equilibrium, since no additional heating is present.

Finally, in the transition region the follwing relations can be

derived for the gas pressure and the maximum temperature

P =2k j;% (7/\«0)2/7 L;3/14 F;1/14 Al (24)
v o (11220 (1 )T (1w )T T (25)

These expressions will be used in section 3.

2.3 The possibility of a thin corona

The case ¢ = 0 can be interpreted as a thin corona. Numerical calculations
of Hearn and Vardavas (1981) and Vardavas and Hearn (1981) have been

done for stationary stellar coronae. The calculations concerned an

OB supergiant with an effective temperature of 31000 K, a mass of

44.7 solar masses and a radius of 27.8 solar radii., The effect of



electronscattering radiation pressure was included by reducing the
effective stellar mass to 25.108 solar masses. _

These coronae were heated by sawtooth waves with a period of 17000
seconds. The mechanical flux was specified deep in the'photosphere.
Fluxes of 103, 104 and 10° erg om 2 g yielded extended stationary
coronae. However, with a flux of 106 erg en? &' the densities

in the outer regions of the corona became so high that thermal .
conduction could no longer maintaih the high temperatures. The
corona collapsed and a thin hydrostatic corona was formed. This
corona had a thickness of only 0.03 stellar radius.

The results of Vardavas and Hearn (1981) and of the calculations

done in section 2.2 are shown in table 1.

-

C I
A— heating constant heating| Vardavas and

Hearn (1981)

P, (dyne cm~2) 7.1 1073 6.3 1073 6.71 1073

' . 5 5 5
T ax (x) 9.8 10 7.0 10 €.98 10

TABLE 1. Comparison with the calculations of Vardavas and Hearn (1981).
The pressure and ma}imum;temperature of a thin corona of an OB supergiant.
The mechanical flux entering the transition region is 2.5 104 erg cm—2s—1.
The thickness of the corona is 0,03 R = 5.8 1010 cm. The solution

achieved for constant heating is the one that satisfies T(0) = T(LO);

From table 1 it is clear that the analytical results are in good agree-
ment with the numerical result of Vardavas and Hearn. _

The effect of the type of heating function on the coronal pressure

is not very important. Only the temperature varies rather strongly.

The reason one finds a maximﬁm temperature that is higher in the case
of S—beating is that the dissipation of mechanical enrgy takes place
in a very thin layer.

The question that arises is: when is an isothermal model for a corona
applicable and when is a thin corona possible? In other words:

what are the 1imitatiohs to extended stationary coronae?

This question will be answered in the next section.
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3. LIMITATICNS TO EXTENDED STATIONARY CORONAE

In the case ¢ € 0 the region beyond the temperature maximum can

be approximated to be isothermal.

For a given mechanical flux FO and a lenght LO a whole set of combinations

Po and Tmax are found. Only one of these is consistent with the
boundary condition at infinity (Martens 1981).

Hearn (1975) derived expressions for the energy losses by radiation
and stellar wind: for a corona that is isothermal up to the Parker
critical point and beyond that expands adiabatically.

These expressions are

7 L 1 Y 2
P, = 6.18 10' M* R = P, x® exp( 1.33 - 1.16 x - 0.0364 x° )
F, = 2.84 107 13 gt Pi ( 0.208 x> + 1.03 x — 1.27 )
x= 5.78 106 ' L
-t max

The energy lossez du? to radiation FR and due to stellar wind Fw are
given in ergcm ~ s . M and R are the stellar mass and radius in
solar units.

The flux that is available for these losses is given by (21).

The equation to solve is

. =B
in out
or

* 8/11
F,(1-3.21€ )=FR+FW

Together with the expressions (24) and (25), which are for given
Fo and Lo funtions of & alone, (28) yields a value for £.
It'may be clear that if one finds a value €= 0.078 the isothermal

approach is no longer valid. In that case the temperature fall back -

to photospheric levels. It is then that a stationary, extended
corona cannot exist.

It is suggested that a thin hydrostatic corona is formed.

(26a)

(26v)

(@)

(28)



4. RESULTS

4.1 Results for an OB supergiant

The theory of sections 2 and 3 was applied to an CB subergiant
with an effective mass of 25 solar masses and a radius of 28 solar
radii. Coronal models were calculated for'increasing mechanical

flux Fo’ while LO was kept constant at 2.9 1010 cm.

o 1 E 1 P51 % | P Fp Te1
10000 | 0.12 | 4.3 |0.82 | 30 | 2800 1.4
20000 | 0.10 | 6.9 | 0.97 | 2400 | 5300 2.5
30000 | 0.09 | 8.8 | 1.06 | 580 | 7300 2.9
40000 | 0.08-| 10.3 |1.12 | 10000 9200 3.2

43500 | 0.078 | 10.8 | 1.14 | 12000 | 9800 3.6

TABLE 2. Results for an 0B supergiént, with an effective
mass of 25 M and a radius of 28 R» L, = 2.9 1O10 cm.

n
A1l quantities in c.g.s. units. ( X, means X x 10 )

Table 2 shows that if the mechanical flux increases the electron
density in the region of the tempergture maximum increases too.
The electron density in that region~is given by
n, = 3;% (211 g 411 F o/ L, % (29)
This means that the local radiation losses are proportional to Fo / Lo.

4 ~1

For a mechanical flux greater than about 4 10" erg c::m—2 s a

stationary extended corona tan no longer exist. Just before the corona

collapses the mass loss is 5 10712 M y-1.
Hearn et al. (1983) found in their iterative calculations, that
before the corona collapsed the mass loss was 2 10712 i y—1.

4 -1

They found a maximum mechanical flux of 4.3 10" ergcm ~ s , a

pressure in the transition region of 1.3 ’lO'-2 dyne cm~2 and a
maximum:.temperature of 1.8 106 K.

One has to realise that before the corona collapses the energy losses
due to stellar wind are as important as the losses due to radiation.
Locally however, that is at the base of the corona, the radiation losses

are much more important than the stellar wind losses,
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This means that the model, which neglect stellar wind effect in the
transition region, is still applicable.

Figure 2 shows the maximum mechanical flux Fo’ consitent with a
stationary extended corona, versus the height Lo of the dissipative
layer. The maximum mechanical flux is about 5 104 erg cm-2 s*1.

From figure 2 it is also clear that there seems {to exist a minimum

Lo consistent with a stationary extended corona. This will be discussed

in section 5.

4.2 The solar corona

The theory of sections 2 and 3 was also applied to the solar corona.
Using a 8 ~heating function the maximum mechanical flux is about

2 1O6 erg cm—2 3-1.

Hammer (1981) found in his numerical calculations no solutions for

a mechanical flux greater than 3 105 -1 106 erg cm_g 3—1. This maximum
depended on the dissipation lenght of the mechanical flux.

To compare the calculations with the results of Martens (1981) and

to investigate the influence of the type of heating function on the
results, calculations were done with the constant heating function.

The major difference, as can be ssen from figure 4, is that the maximum
mechanical flux is larger: 5 106 erg cm—2 s-1. The resemblance is

that in both cases a minimum Lo is found. (Note the difference in the\
definition of L0 for the both heating functions.)

In figure 4 the models of Martens are plotted. One of his models lies
outside the region in the Lo - Fo plane where stationary extended

coronae are possible.
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5. THE INFLUENCE OF Lo

Figures 2, 3 and 4 indicate that there exists a minimum value of Lo'
For a value less than this minimum no stationary extended corona is
possible. This is a new result. It can be made clear by examining
(21), (24), (25) and (26). When £= 0.078 for the solar corona is
found

i} | -2
£, = Fy /F = 1.8 10° (L, F.) 5/14 oxp( 1.33 - 1.16 107 (L, F) /1

- 3.36 108 (Lo FO)'4/7) (30a)
. (A 3.-5/7 .2/1 |
fo= Fp /F =910 L'+ 4.5 107 L_ F
- 5.8 102 171 Fi/7 (300)

For large values of Ld wind losses become important, but for smaller
values of Lo they are negligible compared to radiation losses. 7

To find a minimum value one has to examine (30b). (30b) has three terms.
The physical of the first term of (30b) may be obvious. It describes

the radiation losses at the base of the corona, since it was shoun

that these losses are proportional to FO/LO.

The second and third term describe the radiation losses in the corona
further away from the star. One can easily check that the sum of thess
two term is positive in all cases of physical interest.

The line drawn in figure 3 can be calculated from the equation

-1
£+ =3 (31)
For the solar corona this yields a minimum value of Lo
L, = 1.8 10° (em ). ' (32)
min

In general one has
L, = 181070 R° (cm) (33)
min ‘

where M and R are the stellar mass and radius in solar units.
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6. DISCUSSION AND CONCLUSIONS

Souffrin (1982) found an upper limit for the mechanical flux. For

a larger mechanical flux no stationary dynamical corona was possible.
The heating mechanism he used was dissipation of shockwaves. He

derived relations between the mechanical flux, the coronal temperature
and the iadiation loss of an extended isothermal corona. He then

stated that the total radiation loss could not exceed the total mechanical
heating. This yielded a haximum mechanical flux consistent with an
extended isothermal corona. He did not take into account the energy
losses due to the stellar wind, and he did not indicate what was going
to happen if the maximum mechanical flux was exceeded.

In this paper it is confirmed that there is an upper limit for the
mechanical flux. It is shown that in some cases no extended corona

is possible even if the total radiation loss less then 25 % of the

total heating,

An estimate is given for the upper limit of the mechanical flux and

it is suggested that if this upper limit is exceeded a thin, hydrostatic
corona is formed. The stability of this thin corona is not investigated.
For this a more refined analysis is needed. In such an analysis one

has to account‘for the interactions between the corona and the photosphere.
Hearn et al. (1983) suggest that the corona will undergo a

relaxation oscillation. '

It is granted that the coronal models in this paper are simplifications
of reality. Especially for the solar corona, where magnetic fields

are very important.

However, the advantages of such a simple model are obvious. The models
are completely analytical. In an easy way one gains insight in some

important properties of stellar corona.
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L, h Ly h

(a) c <0 (b) c =20

Figure 1: SOLUTICN OF THE ENERGY EQUATION ' -

For ¢ <0 the solution of the ernergy equation is shown in (a).
For h)I%)one has to match the pressure and temperature to the
isothermal corona erergy loss expressions.

(b) represents the thin corona solution.
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LOG FO LERG CM-2 SEC-11
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Tigure 2: OB SUPERGIANT, models with & -heating.

Maximum mechanical flux versus typical length scale for a typical

0B supergiant, Me

consistent with an extended stationary corona is about 5 10

4

=25 M, R= 28 R . The maximum mechanical flux
ff ® e

-2
erg cm

S
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Figure 3: SOLAR CORCNA, models with & -heating.
Maximum mechanical flux versus typical length scale. The maximum
mechanical flux consistent with an extended stationary corona is

about 2 106 erg e 571,
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LOG FO [ERG CM~2 SEC-11]

5.00

65.00 6.50 7.00 7.50
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4.00
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- +MARTENS 1981

| | l | | | i

8.25  8.50 B.75 3.00 9.25 9.50 9.75 10.00
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Figure 4: SOLAR CORONA, models with constant heating.

Maximum mechanical flux versus typical length scale.

The crosses represent the models of Martens (1981). One of his
models lies outside the region where extended stationary coronas

are possible.




